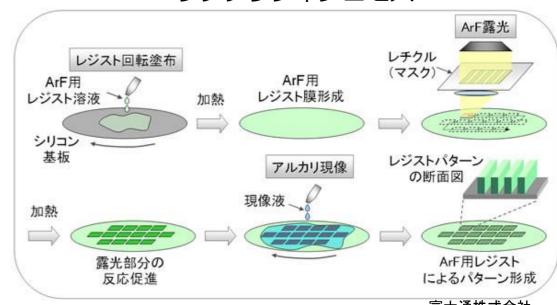


フェムト秒レーザーを用いた微細加工

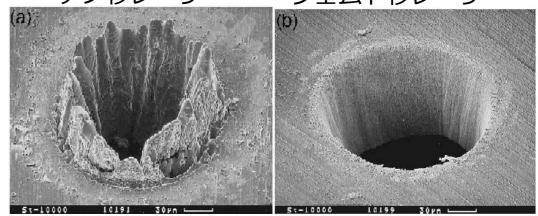
2020年11月 名古屋工業大学 工学専攻 物理工学系プログラム 助教 宮川 鈴衣奈

従来技術とその問題点


微細加工に求められることと課題

- 微細化
- プロセスの簡易さ
- 被加工物へのダメージ,カーフロス

レーザー加工の課題


- ・ 熱影響領域(HAZ)の発生 →超短パルスレーザーにより 熱ダメージの抑制
- ・波長の制限による微細化の限界

リソグラフィプロセス

富士通株式会社

ナノ秒レーザー フェムト秒レーザー

B. N. Chichkov, Appl. Phys. A 63(1996)109

新技術の特徴・従来技術との比較

宮川 鈴衣奈 研究シーズ

従来の微細加工技術における 「微細化」,「ダメージ抑制」 の両方を改善する新たな加工技術

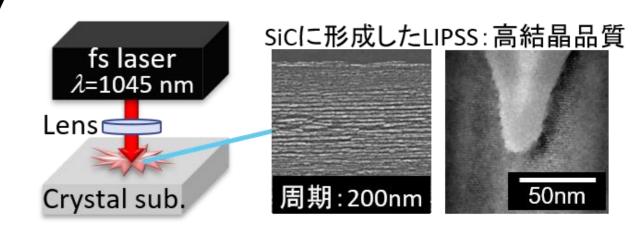
レーザー誘起周期構造 (LIPSS) 波長の~1/20の微細構造 メカニズム解明から自在制御に 取り組んでいる

各微細加工技術の特徴

	リソグラフィ	切削加工	レーザー加工
微細化	0	×	Δ/Ο
プロセスの 簡易さ	×	0	0
被加工物へ のダメージ	×	Δ	0
	X線や電子線に より、ナノレベル の制御マスク形成の微 細化が重要	・微細化と制度は 工具の性能と状態に依存・~サブミクロン制御	・微細化は波長により制限→LIPSSにより 波長の制限超・非接触での形成

名古屋工業大学

新技術の特徴・従来技術との比較


川 鈴衣奈 研究シーズ

レーザー誘起周期構造

(Laser-Induced Periodic Surface Structures: LIPSS)

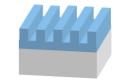
本技術は,従来技術の課題であった「微細化」「煩雑なプロセス」 「材料へのダメージ」を改善する.

- 波長より短い周期の構造形成により, 波長の制限を超える微細化が可能に なった
- 従来のナノ構造形成技術より、被加工材料へのダメージが抑制でき、材料物性を活かした加工を可能にする

想定される用途・実用化イメージ

宮川 鈴衣奈 研究シーズ

量子デバイス


トップダウン式でのナノ構造形成

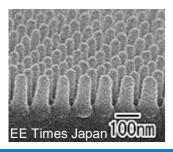
- 発光波長のブルーシフト
- ・ 発光効率の向上
- バンドギャップワイドニング

バイオマテリアル

微細構造形成による 細胞挙動の制御

タンパク質吸着

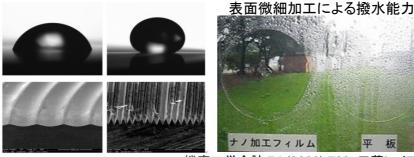
親•疎水性


細胞応答

- ▪骨修復
- •創傷治癒

回折,屈折,反射

周期構造形成


サブ波長→反射加工,回折格子 波長程度→フォトニック結晶

濡れ性

物理·化学的構造

機密工学会誌 74 (2008) 780. 三菱レイヨン

ナノ構造形成による,デバイスの特性向上や新たな機能発現

名古屋工業大学

実用化に向けた課題

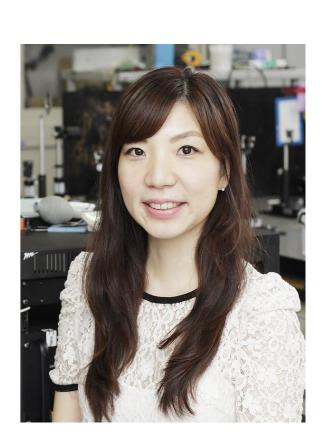
被加工材料によって結晶品質,周期が 異なることを明らかになっている. 詳細な自在制御が今の課題である

- 今後,周期と結晶品質を決定付ける パラメータを明らかにする.
- 周期の自在制御を可能にする.

	SiC	GaN	Sapphire	Si	GaAs
P&f of laser	0.5W,1000kHz	0.1W,100kHz	4W,1000kHz	0.075W,100kHz	0.2W,100kHz
BF- TEM	500nm	500nm	200nm	1μm	200nm
DF- TEM	g		g A	g	g.←
Model	Amorphous (20nm) Crystalline	Crystalline	Crystal rotation Dislocation Crystalline	Amorphous Poly-crystal Crystalline	Poly-crystal Crystalline
Period	200 nm	200-250 nm	200-300 nm	650 nm	60,450,700nm

LIPSSの形成制御

- ✓LIPSS周期の積極的制御
- ✓結晶状態制御への挑戦


LIPSS形成のダイナミクス理解

✓光と物質との相互作用の 理解

名古屋工業大学

求める連携先とメッセージ

- 微細加工を応用させるデバイスを扱う技術を持つ 企業との共同研究を希望
- また,光と物質との相互作用をその場観察できる 技術を持つ企業との共同研究により,新たな物理 の解明にも努めていきたい。

本技術に関する情報

宮川 鈴衣奈 研究シーズ

試作品の状況

提示可

※提供の際は諸手続が必要となるため、問合せ先までご連絡願います。

文献・特許の情報

- R. Miyagawa, Y. Ohno, M. Deura, I. Yonenaga and O. Eryu, Jpn. J. Appl. Phys. 57, 025602 (2018)
- R. Miyagawa and O. Eryu, Jpn. J. Appl. Phys. 58, SCCB01 (2019)
- R. Miyagawa, K. Goto and O. Eryu, Phys. Stat. Solidi (C), 14 1700224 (2017)

【お問合せ】

名古屋工業大学 產学官金連携機構

〒466-8555 名古屋市昭和区御器所町字木市29番

TEL:052-735-5627 FAX:052-735-5542

E-mail: nitfair@adm.nitech.ac.jp

URL: https://technofair.web.nitech.ac.jp/